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Abtract

A brief summary is given of a new rigorious method to
determine resonant frequencies and field distributions
of all resonant modes in a multicomposite, multilayered
cylindrical dielectric resonator. This resonator consists
of a number of concentrical cylinders, which are
arbitrarily layered in axial direction. As examples, a
dielectric sphere and a dielectric cone placed in MIC
environment have been analysed. The sphere and the
cone are structurally approximated by bodies of
revolution with a stepped cross section. The calculated
resonant frequencies have an accuracy of <10-%,

I.Introduction

With increasingly wide applications of dielectric
resonators in monolithic microwave integrated circuits
{ MMIC”s ), especially at high frequency, new dielectric
resonator structures are demanded to design. The new
resonators should have special resonant field distribu-
tions, so that they can be easily coupled to the small
size MMIC”s [11. These requirements in total only can
be fullfilled, if unconditional dielectric resonator
structures are considered for these applications. From
this, a new rigorious analysis method, based on mode
matching technique, to determine resonant frequencies
and field distributions of TE modes in a very generalized
cylindrical dielectric resonator was introduced in a
previous work {11, This resonator consists of a number
of concentric cylinders, which are arbitrarily layered in
axial direction, as shown in Fig. 1. It was called a
multicomposite, multilayered cylindrical dielectric
resonator. In this paper, the theory is extended to
study not only TE modes, but also TM and hybrid
modes in the resonator ( Fig. 1).

As an example, a dielectric sphere placed on a substrate
and between two parallel conducting plates has been
analysed. The sphere is structurally approximated by a
circumscribed and an inscribed dielectric body of
revolution with a stepped cross section, respectively
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( Fig. 2a and 2b ). Thus the spherical dielectric
resonator can be treated as a special case of the
multicomposite, multilayered cylindrical dielectric
resonator. If sufficiently many steps ( N ) are selected,
the solutions of the both resonators ( Fig. 2a and 2b )
should converge to the solution of the spherical
dielectric resonator. The spherical dielectric resonator
is very useful for application at millimeter-wave
frequency, because the spherical sample is easier to
produce in small dimension than the cylindrical ones.
Different spherical dielectric resonators have been
discussed mostly in spherical coordinate system [2-41.
The resonant frequency of the TE,,; mode for a
dielectric sphere placed between two parallel conducting
plates was calculated by Vincent [5]. Comparisions
with his numerical results have been made, showing a
very good agreement.

As second example, a dielectric cone in the same MIC
environment { Fig. 3 ) has been analysed. The conical
dielectric resonator has the advantage that the magnetic
field of the TE,;; mode near the surface of the
substrate is concentrated in the vicinity of the cone
apex. Hence, it is possible to couple the resonator
directly to a microstrip line or to a coplanar waveguide
on a MMIC chip, not interfering with other circuits or
components on it. Moreover, the undesired higher
order TE modes are effectively suppressed.

II. Theory

A multicomposite multilayered cylindrical dielectric
resonator can be considered to be cascaded from many
parallel-plate radial waveguides, which have the same
distance between two parallel conducting plates and are
layered by different dielectric materials in axial direction
( Fig. 1). The fields in each radial waveguide can be
presented in terms of a series of the TE and TM
waveguide modes, whose unknown coefficients are the
mode amplitudes at two boundary surfaces p=r;_, and
I. The boundary mode amplitudes of each two neigh-
bouring waveguides are connected by a “cascade matrix”
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derived from mode matching technique. The resonant
frequencies of the resonator are determined by solving
an eigenvalue problem of a linear homogeneous system
of order NTE:NTM ( term numbers of the field series
of the TE and TM modes ). This method can further
be extended to study a multilayered, multicoated
cylindrical dielectric resonator, using axial mode
matching technique.

ITI. Numerical Results

A dielectric sphere and a dielectric cone in a MIC
environment ( Fig. 2 and 3 ) have been theoretically
investigated. Fig. 4 shows the convergence of the
resonant frequency for the TE,,, mode when two
bodies of revolution with a stepped cross section
converge structurally to the sphere by increasing the
step number N ( Fig. 2 ). If the step number N
is selected larger than 50 and the term number of the
field series NTE larger than 20, the relative error of
the resonant frequency for TE,, mode is smaller than
10-4. Fig. 5 shows the resonant frequencies of two
non-leaky modes ( TEg,; and TE,,, modes ) versus
the sphere diameter. Fig. 6 shows the field pattern of
the two modes for a dielectric sphere with diameter
D=1.85 mm. Fig. 7 shows the field pattern of three
lowest TM modes for the dielectric sphere placed in a
cylindrical conducting cavity with R=2.60 mm and
H=3.00 mm. The resonant frequencies of these modes
decrease with increasing the cavity radius R ( Fig. 8 ).
Comparisions with the results by P. Vincent [5] for a
dielectric sphere placed between two parallel conducting
plates are shown in Fig. 9 and 10. They show a very
good agreement.

Fig. 11 shows resonant frequencies of the single non-
leaky mode ( TE,, mode ) in the conical dielectric
resonator { Fig. 3 ) with different cone diameters D
and heights L. Fig. 12 shows its field pattern with cone
diameter D=2.55 mm and height L=1.8 mm. It is quite
evident that the magnetic field strength near the
substrate surface diminishes rapidly along radial
direction away from the cone apex. Hence, a proper
designed cone resonator can be coupled to a circular
microstrip line or to a circular coplanar waveguide on a
MMIC chip, not interfering with other circuit elements.

IV. Conclusions

Computer programs have been developed in C language
to study a multicomposite, mutlilayered cylindrical
dielectric resonator and to draw the field pattern of
the various resonant modes. A dielectric sphere and a
dielectric cone placed in a MIC environment have been
theoretically investigated. A proper designed conical
dielectric resonator may be coupled to the small size
MMIC"s, using the magnetic field near the cone apex.
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Fig. 1: A multicomposite multilayered cylindrical
dielectric resonator structure.

Fig. 2: A dielectric sphere, structurally approximated
(‘a) by a circumscribed and ( b)) by an inscribed body
of revolution with a stepped cross section ( step
number N=10 ), respectively, placed on a substrate and
between two parallel conducting plates.

Fig. 3: A conical dielectric resonator structure.
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Fig. 4: Resonant frequency of the TE,,, mode vs steps
N, (1) for a circumscribed and ( 2 ) for an inscribed
body of revolution with a stepped cross section in the
MIC environment ( Fig. 2 ) with D=1.85 mm, £ =29.57,
h=250 ym, ¢ =10, H=3.00 mm and NT¥=20 is selected.
( 3) average value of the resonant frequencies.
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Fig. 5: Resonant frequency of the TE,,, and TE,,,
modes vs sphere diameter, for a spherical dielectric
resonator with ¢ =29.57, h=250 ym, ¢ _=10, H=3.00 mm.

931

Fig. 6: Electric ( left ) and magnetic ( right } field
pattern of ( a ) TE,,, and ( b ) TE,, modes in a
spherical dielectric resonator with D=1.85 mm, ¢,=29.57,
h=250 ym, ¢ =10, H=3 mm.

Fig. 7: Electric ( left ) and magnetic ( right ) field
pattern of ( a ) TMy 50, ( b)) TMp o1y and (c)
TMp 012 modes, for the spherical dielectric resonator
{ Fig. 6 ) in a cylindrical conducting cavity with H=3
mm, R=2.6 mm.



5 TMD,OlZ\
™ \\TMD’(’“
GHz |""'pD.om1 g
‘\ TEOIZ
\TMH,03O
f, 35 N
— B \\TEou
25 \ ™y 020
\\TMH,om
15 \\
2 4 mm 8

cavity radius R

Fig. 8: Resonant frequency variations of some lower
order modes vs cavity radius R, for the spherical
dielectric resonator ( Fig. 7 ).
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Fig. 9: Resonant frequency of the TE.,, mode vs air
gap between the two conducting plates, for a dielectric
sphere { radius R=5 mm, permittivity ¢ =34.61 );
our computation with NTE=20 terms of the field series
and N=50 steps in structure, e e e : numerical results
by P. Vincent [5].
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Fig. 10: Resonant frequency of the TE,,; mode vs
sphere radius with permittivity ¢ =34.61, air gap 2h=20
mm. : our computation with NTE=20 terms of
the field series and N=50 steps in structure, e e e :
numerical results by P. Vincent [5].

34

GHz

30

28

cone height L

Fig. 11: Resonant frequency of the TE,,, mode vs
cone height L, for a conical dielectric resonator with
different cone diameters D, £.=29.57, h=250 pm, ¢ =10,
H=3.0 mm.

Fig. 12: Electric ( left ) and magnetic ( right ) field
pattern of the TE,, mode in a conical dielectric
resonator ( Fig. 3 ) with D=2.55 mm, L=1.80 mm,
£,=29.57, h=250 um, ¢ =10, H=3 mm.



